3,116 research outputs found

    Many-agent controlled teleportation of multi-qubit quantum information

    Full text link
    We present a general idea to construct methods for multi-qubit quantum teleportation between two remote parties with control of many agents in the network. Our methods seem to be much simpler than the existing method proposed recently (Phys. Rev. A {\bf 70}, 022329(2004)). We then demonstrate our idea by using several different protocols of quantum key distribution, including Ekert 91 and the deterministic secure communication protocol raised by Deng and Long.Comment: This paper has been accepted for publication in Phys. Lett.

    Cavity-based architecture to preserve quantum coherence and entanglement

    Get PDF
    Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.Comment: 12 pages, 9 figures, 1 table. To appear on Nature Scientific Report

    Moderate deviations in Poisson approximation: a first attempt

    Full text link
    Poisson approximation using Stein's method has been extensively studied in the literature. The main focus has been on bounding the total variation distance. This paper is a first attempt on moderate deviations in Poisson approximation for right-tail probabilities of sums of dependent indicators. We obtain results under certain general conditions for local dependence as well as for size-bias coupling. These results are then applied to independent indicators, 2-runs, and the matching problem.Comment: 21 page

    Harnessing non-Markovian quantum memory by environmental coupling

    Full text link
    Controlling the non-Markovian dynamics of open quantum systems is essential in quantum information technology since it plays a crucial role in preserving quantum memory. Albeit in many realistic scenarios the quantum system can simultaneously interact with composite environments, this condition remains little understood, particularly regarding the effect of the coupling between environmental parts. We analyze the non-Markovian behavior of a qubit interacting at the same time with two coupled single-mode cavities which in turn dissipate into memoryless or memory-keeping reservoirs. We show that increasing the control parameter, that is the two-mode coupling, allows for triggering and enhancing a non-Markovian dynamics for the qubit starting from a Markovian one in absence of coupling. Surprisingly, if the qubit dynamics is non-Markovian for zero control parameter, increasing the latter enables multiple transitions from non-Markovian to Markovian regimes. These results hold independently on the nature of the reservoirs. This work highlights that suitably engineering the coupling between parts of a compound environment can efficiently harness the quantum memory, stored in a qubit, based on non-Markovianity.Comment: 8 pages, 5 figures. To appear in Phys. Rev.
    corecore